
1 

Paper 240-29  
 

Steps to Success with PROC MEANS 
 

Andrew H. Karp 
SIERRA INFORMATION SERVICES, INC. 

SONOMA, CALIFORNIA USA 
 

 
Introduction 
One of the most powerful and flexible Procedures you’ll find in the SAS System is PROC MEANS.  You can use it to 
rapidly and efficiently analyze the values of numeric variables and place those analyses either in the Output Window 
or in a SAS Data Set (or both).  Mastering the basic syntax and features of this procedure will enable you to easily 
create many of the analyses you need from your data sets.   Taking the time to master advanced PROC MEANS 
features, many of which were added (or enhanced) in Version 8 of the SAS System, will further expand your ability to 
create powerful and effective analyses of your data.  This paper presents a series of “Steps to Success” that show 
you some of the core features of PROC MEANS and how you can apply them to the observations/variables in a SAS 
data set.  Starting from the basics, and moving through more advanced capabilities in PROC MEANS, the “Steps to 
Success” presented here offer an in-depth understanding of many tools in this BASE SAS Procedure.  Even more 
tools and capabilities are available than can be presented here; so, after reading this paper, you should take the time 
to look at the detailed PROC MEANS documentation in the BASE SAS Procedures Guide to learn about even more 
features, options and capabilities available to you. 
 
Overview 
PROC MEANS is used in a variety of analytic, business intelligence, reporting and data management situations.  
Data warehousing experts may use it during the ETL (Extract-Transform-Load) process to create “lightly summarized” 
data sets from very large, transaction-level data sets.  These ‘lightly summarized” data sets are then stored in “data 
warehouses” or “data marts” for use in other analytic and reporting tasks.  On the other hand, business analysts and 
programmers may use its capabilities to generate analyses of data, and group those analyses “by” the values of 
specified in the “by” or “classification” variables placed in the PROC MEANS task.  These analyses may be sent to 
the Output Window, “delivered” to other Output Delivery System (ODS) destinations (such as a PDF or HTML file) , or 
stored in SAS data sets which are then used by other SAS Procedures or exported to CSV or spreadsheet files.  
Lastly, PROC MEANS capabilities may be employed in “data cleansing” or “exploratory data analysis” tasks to 
determine if incorrect or “bad” values of analysis variables are contained in the data set that must be transformed or 
removed prior to further analysis. 
 
Key Terms and Concepts 
PROC MEANS is included the BASE Module of SAS System Software.  When using it, the term “analysis variable” 
refers to the numeric variable (or variables) whose values you want to have the procedure analyze.  “Classification” or 
“By” variables are those (numeric or character) variables whose values will be used to “classify” the analyses of the 
values of the analysis variables.  For example, if you want to analyze the numeric variable SALARY classified by 
GENDER, the analysis variable is SALARY and the classification variable is GENDER.  The analyses you can 
perform using PROC MEANS are referred to as “statistics” or “analyses” and are implemented by specifying the 
“statistics keyword” for the desired analysis within the PROC MEANS “task” or “unit of work.”  So, if you wanted the 
MEAN and MEDIAN values of SALARY classified by GENDER, the MEAN and MEDIAN statistics keywords would be 
specified in your PROC MEANS task.  (A full list of statistics keywords and their proper placement in the PROC 
MEANS syntax is discussed later in this paper.) To round out the terms used in this paper, “input data set” refers to 
the “source” data set on whose observations and variables will be used by PROC MEANS and “output data set” 
describes a SAS data set created by PROC MEANS which “stores” or “holds” the desired analyses. 
 
Data Sets and SAS Software Version Used in the Examples 
Two SAS data sets are used to generate the examples you’ll see in this tutorial. An Early Adopter Release of SAS 9 
Software was used to create the code and output, but everything presented in this paper is available in Release 8.0 
and higher of the SAS System.  
 
The first data set, ELEC_ANNUAL, contains about 16,300 customer-level observations (rows) with information about 
how much electricity they consumed in a year, the rate schedule on which they were billed for the electricity,  the total 
revenue billed for that energy and the geographic region in which they live.  The variables in the data set are: 

• PREMISE  Premise Number  [Unique identifier for customer meter] 
• TOTKWH  Total Kilowatt Hours [KwH is the basic unit of electricity consumption] 
• TOTREV  Total Revenue  [Amount billed for the KwH consumed] 

  SUGI 29   Tutorials



2 

• TOTHRS  Total Hours  [Total Hours Service in Calendar Year] 
• RATE_SCHEDULE Rate Schedule  [Table of Rates for Electric Consumption Usage] 
• REGION   Geographic Region [Area in which customer lives] 

 
The second data set, CARD_TRANS2, contains about 1.35 million observations (rows), each representing one 
(simulated) credit card transaction.  The variables in the data set are: 

• CARDNUMBER  Credit Card Number 
• CARDTYPE  Credit Card Type  [Visa, MasterCard, etc.] 
• CHARGE_AMOUNT Transaction Amount (in dollars/cents) 
• TRANS_DATE  Transaction Date  [SAS Date Variable] 
• TRANS_TYPE  Transaction Type  [1=Electronic 2=Manual] 

 
Step 1:  Basics and Defaults 
By default, PROC MEANS will analyze all numeric variables in your data set and “deliver’ those analyses to your 
Output Window.  Five default statistical measures are calculated:   

• N Number of observations with a non-missing value of the analysis variable 
• MEAN Mean (Average) of the analysis variable’s non-missing values 
• STD Standard Deviation 
• MAX Largest (Maximum) Value 
• MIN Smallest (Minimum) Value 

 
Using the ELEC_ANNUAL Data Set and PROC MEANS, we can see how the default actions of PROC MEANS are 
carried out by submitting the following code: 

* Step 1: Basics and Defaults; 
  PROC MEANS DATA=SUGI.ELEC_ANNUAL; 
  title 'SUGI 29 in Montreal'; 
  title2 'Steps to Success with PROC MEANS'; 
  title3 'Step 1: The Basics and Defaults'; 
  run; 
 
The results displayed in the Output Window are: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Since TOTKWH, TOTREV and TOTHRS are all numeric variables, PROC MEANS calculated the five default 
statistical measures on them and placed the results in the Output Window. 
 
Step 2:  Taking Control:  Selecting Analysis Variables, Analyses to be Performed by PROC MEANS , and 
Rounding of Results 
 
In most situations, your data sets will probably have many more numeric variables you want PROC MEANS to 
analyze.  This particularly true if some of your numeric variables don’t “admit” of a “meaningful arithmetic operation,” 
which is a fancy way of saying that the results of calculating a statistic on them results in meaningless “information.”  
For example, the sum of ZIPCODE or the MEAN of telephone number is unlikely to be useful.  So, we don’t want to 
waste time having these values calculated or clutter up our output with meaningless “information.”  Also, we may not 

SUGI 29 in Montreal 
Steps to Success with PROC MEANS 
Step 1: The Basics and Defaults 
 
The MEANS Procedure 
 
Variable        N            Mean         Std Dev         Minimum         Maximum 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
totkwh      16329         6237.48         8963.74               0       361920.00 
totrev      16382     753.8247088         1046.65       1.6500000        40665.50 
tothrs      16378         8648.72     610.7884985     240.0000000         9120.00 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 

  SUGI 29   Tutorials



3 

need all of the five statistical analyses that PROC MEANS will perform automatically.  And, we may want to round the 
values to a more useful number of decimal places than what PROC MEANS will do for us automatically. 
 
Again using the ELEC_ANNUAL data set, here is how we can take more control over what PROC MEANS will do for 
us.  Suppose we just want the SUM and MEAN of TOTREV, rounded to two decimal places.  The following PROC 
MEANS task gets us just what we want. 

 
* Step 2: Taking Control; 
  PROC MEANS DATA=SUGI.ELEC_ANNUAL MEAN SUM MAXDEC=2; 
  VAR TOTREV; 
  Title3 'Step 2: Taking Control'; 
  run; 

A box has been drawn around the important features presented iin Step 2.  First, the SUM and MEAN statistics 
keywords were specified, which instructs PROC MEANS to just perform those analyses.  Second, the MAXDEC 
option was used to round the results in the Output Window to just two decimal places.  (If we had wanted the 
analyses rounded to the nearest whole number, then MAXDEC = 0 would have been specified.)  Finally, the VAR 
Statement was added, giving the name of the variable for which the analyses were desired.  You can put as many 
(numeric) variables as you need/want in to one VAR Statement in your PROC MEANS task. 
 
The Output Window displays: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Step 3:  Selecting Other Analyses 
 
So far we’ve worked some of the (five) default statistical analyses available from PROC MEANS. There are many 
other statistical analyses you can obtain from the procedure!  Here is a complete list: 
 

Descriptive Statistics Keywords  Quantile Statistlcs 
Keywords  

CLM RANGE MEDIAN|P50 Q3|P75 

CSS SKEWNESS|SKEW P1 P90 

CV STDDEV|STD P5 P95 

KURTOSIS|KURT STDERR P10 P99 

LCLM SUM Q1|P25 QRANGE 

MAX SUMWGT Hypothesis testing 
keywords  

MEAN UCLM PROBT T 

MIN USS 

N VAR 

NMISS --- 

SUGI 29 in Montreal 
Steps to Success with PROC MEANS 
Step 2: Taking Control 
 
The MEANS Procedure 
 
 Analysis Variable : totrev 
 
        Mean             Sum 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
      753.82     12349156.38 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 

  SUGI 29   Tutorials



4 

 
Suppose the observations in ELEC_DATA are a random sample from a larger population of utility customers.  We 
might therefore want to obtain, say, a 95 percent confidence interval around the mean total KwH consumption and 
around the mean billed revenue, along with the mean and median.  From the above table, you can see that the 
MEAN, MEDIAN and CLM statistics keywords will generate the desired analyses.   The PROC MEANS task below 
generates the desired analyses.  The task also includes a LABEL Statement, which add additional information about 
the variables in the Output Window. 
 

* Step 3: Selecting Statistics; 
  PROC MEANS DATA=SUGI.ELEC_ANNUAL  
    MEDIAN MEAN CLM MAXDEC=0; 
  Label TOTREV = 'Total Billed Revenue' 
        TOTKWH = 'Total KwH Consumption'; 
  VAR TOTREV TOTKWH; 
  title3 'Step 3: Selecting Statistics'; 
  run; 
 

The output generated is: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Step 4:  Analysis with CLASS (variables) 
 
So far we’ve analyzed the values of variables from ELEC_ANNUAL without regard to the values of potentially 
interesting and useful classification variables.  PROC MEANS can do this for you with a minimum of additional 
coding.  First, we need to understand what the CLASS and BY Statements “do” when included in a PROC MEANS 
task.  The CLASS statement does not require that the input (source) data set be sorted by the values of the 
classification variables.  On the other hand, using the BY Statement requires that the input data set be sorted by the 
values of the classification variables.  
 
In most situations, it does not matter if you use the CLASS or BY statement to request analyses classified by the 
values of a classification variable.  If you are working with a very large file, however, with many classification 
variables (and/or classification variables with many distinct values), you may obtain significant processing time 
reductions if you first use PROC SORT to sort the data by the values of the classification variable and then use 
PROC MEANS with a BY Statement.  Unfortunately, I cannot give you a “magic number” of observations or variables 
at which it become more efficient to first sort and then use a BY statement versus using the CLASS statement on a 
unsorted data set.  Factors such as the actual number of observations, the number of unique values of the CLASS 
variables, memory allocation/availability, CPU power, etc. all come in to play and can’t really be estimated in 
advance.  You’ll have to use some trial and error to figure out which approach is best for your unique data structures 
and computing capabilities. 
 
Having said all of this, let’s take a look at how we can obtain the MEAN and SUM of TOTREV classified by REGION 
in the ELEC_ANNUAL data set.  All we need to do is add the CLASS statement (with REGION as the classification 
variable) to the PROC MEANS task, as shown below. 
 

SUGI 29 in Montreal 
Steps to Success with PROC MEANS 
Step 3: Selecting Statistics 
 
The MEANS Procedure 
 
                                                                    Lower 95%      Upper 95% 
Variable   Label                         Median           Mean    CL for Mean    CL for Mean 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
totrev     Total Billed Revenue             606            754            738            770 
totkwh     Total KwH Consumption           5082           6237           6100           6375 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 

  SUGI 29   Tutorials



5 

* Step 4: Analysis with CLASS (Variables); 
  PROC MEANS DATA=SUGI.ELEC_ANNUAL  
    SUM MEAN MAXDEC=0 ; 
  CLASS REGION; 
  VAR TOTREV TOTKWH; 
  title3 'Step 4: Analysis with CLASS (Variables)'; 
  run; 
 

The Output Window displays: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
By specifying REGION in the CLASS Statement, we now have the MEAN and SUM of TOTREV and TOTKWH for 
each unique value of region.  We also have a column called “N Obs,” which is worthy of further discussion.  By 
default, PROC MEANS shows the number of observations for each value of the classification variable.  So, we can 
see that there are, for example, 5,061 observations in the data set from the WESTERN Region. 
 
How does PROC MEANS handle missing values of classification variables?  Suppose there were some observations 
in ELEC_ANNUAL with missing values for REGION.  By default, those observations would not be included in the 
analyses generated by PROC MEANS…but, we have an option in PROC MEANS that we can use to include 
observations with missing values of the classification variables in our analysis.  This option is shown in Step 5. 
 
Step 5:  Don’t Miss the Missings! 
 
As we saw in Step 4, PROC MEANS automatically creates a column called “N Obs” when a classification variable is 
placed in a CLASS or BY Statement.  But, observations with a missing value are, by default, excluded (not portrayed) 
in the output analysis.  There are certainly many instances where it would be useful to know: a) how many 
observations have a missing value for the classification variable and b) what the analyses of the analysis variables 
are for observations that have a missing value for the given classification variable.  We can easily obtain this 
information by specifying the MISSING option in the PROC MEANS statement.  Here’s how to do it: 
 

* Step 5: Don't Miss the Missings; 
  PROC MEANS DATA=SUGI.ELEC_ANNUAL SUM MEAN MAXDEC=0 MISSING; 
  CLASS REGION; 
  VAR TOTREV TOTKWH; 
  title3 "Step 5: Don't Miss the Missings!"; 
  run; 

SUGI 29 in Montreal 
Steps to Success with PROC MEANS 
Step 4: Analysis with CLASS (Variables) 
 
The MEANS Procedure 
 
REGION           N Obs    Variable             Sum            Mean 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
EASTERN           5100    totrev           3315024             674 
                          totkwh          28053594            5517 
 
NORTHERN          5447    totrev           4383227             834 
                          totkwh          37582600            6917 
 
SOUTHERN           718    totrev            557616             810 
                          totkwh           4873954            6788 
 
WESTERN           5061    totrev           3324052             680 
                          totkwh          27949333            5549 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 

  SUGI 29   Tutorials



6 

The output this task created is: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Now it’s clear that our data set has some (38, to be exact) observations with a missing value of the classification 
variable REGION. Maybe we need to examine our data more carefully to find out why some observations don’t have 
a valid value for REGION? 
 
Step 6:  Don’t Miss the Missings (Part II) 
 
In Step 5 we used the MISSING option to see how many observations had a missing value for the classification 
variable (REGION).  In this Step, we’ll look at the NMISS and N statistics keywords to assess how many observations 
have a missing (or non-missing) value of the analysis variables.  This is often an important exploratory/data cleaning 
step in an analytic project…after all, the presence of missing values of an analysis variable can point to errors in past 
programming steps, inaccurate data collection methods, or other problems that can have negative impacts on your 
analyses.  Let’s take a look at what the NMISS and N statistics keywords can do for us. 
 

* Step 6: Don't Miss the Missings (PART II); 
  PROC MEANS DATA=SUGI.ELEC_ANNUAL  
       MAXDEC=0 MISSING N NMISS; 
  CLASS REGION; 
  VAR TOTREV TOTKWH; 
  title3 "Step 6: Don't Miss the Missings! (Part II)"; 
  run; 
 

The output is: 
 
 
 
 
 
 

Continued on Next Page… 
 
 

SUGI 29 in Montreal 
Steps to Success with PROC MEANS 
Step 5: Don't Miss the Missings! 
 
The MEANS Procedure 
 
REGION           N Obs    Variable             Sum            Mean 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
                    38    totrev             55671            1505 
                          totkwh            450702           11861 
 
EASTERN           5100    totrev           3315024             674 
                          totkwh          28053594            5517 
 
NORTHERN          5447    totrev           4383227             834 
                          totkwh          37582600            6917 
 
SOUTHERN           718    totrev            557616             810 
                          totkwh           4873954            6788 
 
WESTERN           5061    totrev           3324052             680 
                          totkwh          27949333            5549 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 

  SUGI 29   Tutorials



7 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The output from Step 6 shows the interrelationship between the “N Obs” Column and the N and NMISS Statistics 
keywords.  For example, look at the Eastern Region.  There are 5,100 observations with a value of REGION equal to 
“EASTERN.”  Of those, 4,921 have a non-missing value of TOTREV and 179 have a missing value. 
 
Step 7:  Take What You Need and Leave the Rest. 
 
This Step shows how your can apply the WHERE Clause Data Step Option to limit PROC MEANS’ “work” to just the 
observations in your data set you’re really interested in analyzing without first having to create a subset SAS data set.  
By using the WHERE Clause as a SAS Data Set Option, you can tell PROC MEANS which observations you want to 
analyze and which ones you, in effect, want the procedure to “ignore” while creating the analyses you want. 
 
In addition, this Step shows you what happens when you specify two variables in a CLASS statement.  What we want 
to do is calculate the mean total kilowatt hours classified by REGION and RATE_SCHEDULE, but only for the 
WESTERN and SOUTHERN REGIONS, and only for customers in those two regions whose values of 
RATE_SCHEDULE start with the string “E1.”  We can do all of this in one PROC MEANS task, with the WHERE 
Clause Data Set Option playing a large role in this example.  Also shown in Step 7 is the NONOBS Option, which 
eliminates the (default) presentation of the number of observations column in the Output Window. The code is: 
 

* Step 7: Take What You Want and Leave the Rest; 
PROC MEANS 
 DATA=SUGI.ELEC_ANNUAL(WHERE=(REGION IN('WESTERN','SOUTHERN') 
           and  SUBSTR(RATE_SCHEDULE,1,2) = 'E1'))  
  MAXDEC = 0 MEAN SUM NONOBS; 
VAR TOTKWH; 
CLASS REGION RATE_SCHEDULE; 
title3 'Step 7: Take What You Need and Leave the Rest'; 
run; 

 
 
 
The output is: 
 
 

Continued on Next Page… 

SUGI 29 in Montreal 
Steps to Success with PROC MEANS 
Step 6: Don't Miss the Missings! (Part II) 
 
The MEANS Procedure 
                                                   N 
REGION           N Obs    Variable        N     Miss 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
                    38    totrev         37        1 
                          totkwh         38        0 
 
EASTERN           5100    totrev       4921      179 
                          totkwh       5085       15 
 
NORTHERN          5447    totrev       5257      190 
                          totkwh       5433       14 
 
SOUTHERN           718    totrev        688       30 
                          totkwh        718        0 
 
WESTERN           5061    totrev       4889      172 
                          totkwh       5037       24 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 

  SUGI 29   Tutorials



8 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
What Have We Learned So Far? 
 
The first seven “Steps to Success” have shown various options and approaches to generate analyses and have those 
analyses displayed in the Output Window.  We’ve seen various options to control which statistics are generated, how 
many decimal places the analyses are rounded, etc.  We’ve also seen the role of the CLASS Statement, when both 
one and two classification variables.  Now we’ll take a look at how to place the analyses PROC MEANS creates in to 
SAS data sets. 
 
Creating SAS Data Sets with PROC MEANS:  Some General Considerations 
 
By default, PROC MEANS presents its results in your Output Window.  The OUTPUT Statement is used in the PROC 
MEANS task to create a SAS Data Set with the analyses created by the Procedure.  Options within the OUTPUT 
Statement will control which analyses are created, the names of the variables in the data set which contain or “hold” 
these analyses, and other aspects of the data sets you can create with the Procedure.  In some situations, the 
structure and/or content of the data set will also be governed by statements and options elsewhere in the PROC 
MEANS task.   
 
Step 8:  Creating a Simple Data Set with PROC MEANS 
 
Looking back to Step 2, suppose that we wanted to store the PROC MEANS-generated analyses in a SAS data set 
instead of placing them in the Output Window.  We can do this by including an OUTPUT Statement as part of the 
PROC MEANS task, which will control what variables and observations are placed in to the data set.  Also, by adding 
the NOPRINT option to the PROC MEANS Statement, we will suppress presentation of the results in the Output 
Window.  Here is the PROC MEANS task we need: 

* Step 8: Create a Simple Data Set; 
PROC MEANS DATA=SUGI.ELEC_ANNUAL NOPRINT; 
VAR TOTREV; 
OUTPUT OUT=SUGI1 MEAN=MeanRev SUM=TotalRev; 
RUN; 
 
PROC PRINT DATA=SUGI1; 

TITLE3 'Step 8: Create a Simple Data Set'; run; 
Before looking at the output, let’s go over the PROC MEANS task.  First, the NOPRINT Option was used to “tell” 
PROC MEANS to not put its work in the Output Window.  The Output Statement’s syntax included the name of the 
(temporary) Data Set (SUGI1) in which PROC MEANS will place its results.  The MEAN and SUM Statistics 

SUGI 29 in Montreal 
Steps to Success with PROC MEANS 
Step 7: Take What You Need and Leave the Rest 
 
The MEANS Procedure 
 
               Analysis Variable : totkwh 
 
                 rate_ 
REGION           schedule            Mean             Sum 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
SOUTHERN         E1                  6781         3770511 
                 E1C                11144          100299 
                 E1L                 4582          559014 
                 E1M                14550           43650 
 
WESTERN          E1                  5255        23961761 
                 E1C                 5615           39305 
                 E1L                 4635         1529594 
                 E1M                22206          999292 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 

  SUGI 29   Tutorials



9 

Keywords were given, and to the right of the equals sign is the name of the variable in output data set SUGI1 that will 
hold the analyses generated by those keywords.  Now, let’s look at PROC PRINT output: 
 
 
 
 
 
 
 
 
 
 
 
 
There’s one observation (row) in the data set.  The variables specified in the OUTPUT Statement, MeanRev and 
TotalRev, hold the results of applying the MEAN and SUM statistics keywords to the analysis variable TOTREV.  By 
default, PROC MEANS generated two other variables:  _TYPE_ and _FREQ_.  We’ll look at _TYPE_ shortly.  
_FREQ_ shows the number of observations in the input data set that were used to calculate the analyses stored in 
data set SUGI1. 
 
Step 9:  Creating a More Complex Data Set with PROC MEANS 
 
What happens when we have two or more analysis variables?  What we’ll need to do is add some more instructions 
to the OUTPUT Statement to make sure we get exactly what we want in the output data set. In the next example, we 
will ask PROC MEANS to calculate the SUMs of TOTWKH and TOTREV, and the MEAN of TOTREV and the 
MEDIAN of TOTHRS.  Notice, please, how the OUTPUT Statement is written to obtain the desired results. 
 

* Step 9: A More Complex Data Set; 
PROC MEANS DATA=SUGI.ELEC_ANNUAL NOPRINT; 
VAR TOTREV TOTKWH TOTHRS; 
OUTPUT OUT=SUGI2 sum(TOTREV TOTKWH) = sum_rev sum_kwh 
                 mean(TOTREV) = mean_rev 
      median(TOTHRS) = median_hrs; 
run; 

 
You’ll see that there are three analysis variables in the VAR statement.  In the OUTPUT statement creating 
temporary data set SUGI2, the name of the variable (or variables) for which the desired analysis is to be carried out 
are enclosed in parentheses, and the variable names are again given to the right of the equals sign.  This example 
demonstrates how you can select different analyses to be performed on different analysis variables.  So, we can 
easily obtain the SUMs, MEAN and MEDIAN of different analysis variables in one PROC MEANS task.  The data set 
is: 
 
 
 
 
 
 
 
 
 
 
 
 
Step 10:  Using the AUTONAME Option  
 
In Steps 8 and 9 we’ve supplied variable names in the Output Statement to use when creating the output data set.  
Using the AUTONAME Option, which was added to PROC MEANS in Version 8, instructs the procedure to 
automatically name the variables it creates and stores in your output data sets.  Let’s repeat Step 9, but this time use 
the AUTONAME Option to have PROC MEANS “do the work for us.”    The PROC MEANS task is: 
 
 

SUGI 29 in Montreal 
Steps to Success with PROC MEANS 
Step 8: Create a Simple Data Set 
 
Obs    _TYPE_    _FREQ_    MeanRev      TotalRev 
 
 1        0       16364    736.803    11635590.67 

SUGI 29 in Montreal 
Steps to Success with PROC MEANS 
Step 10: A More Complex Data Set 
 
                                                                  median_ 
Obs    _TYPE_    _FREQ_      sum_rev       sum_kwh    mean_rev      hrs 
 
 1        0       16364    11635590.67    98910183     736.803      8760 

  SUGI 29   Tutorials



10 

* Step 19: Using the AUTONAME Option; 
PROC MEANS DATA=SUGI.ELEC_ANNUAL NOPRINT; 
VAR TOTREV TOTKWH TOTHRS; 
OUTPUT OUT=SUGI2  sum(TOTREV TOTKWH) =   
                  mean(TOTREV) =   
         median(TOTHRS) =  / AUTONAME; 
run; 

 
When the AUTONAME option is specified, PROC MEANS creates variable names in the output data set by taking the 
name of the analysis variable, appending an underscore to it, and then “attaching” the name of the statistics keyword 
to right of the hyphen.  Here is the output data set: 
 
 
 
 
 
 
 
 
 
 
 
Step 11:  Understanding _TYPE_ and _FREQ_ 
 
In Steps 10 and 11 we’ve seen the variables _TYPE_ and _FREQ_, which are automatically generated by PROC 
MEANS when you use the OUTPUT statement to create a SAS data set.  Let’s take a look at what _TYPE_ is, and 
what it can do for us.  To gain an appreciation of what this variable is, and what it represents, let’s re-run the PROC 
MEANS task shown in Step 7, but this time we’ll store the analyses in a SAS data set. Here’s the revised code: 
 

* Step 11: Understanding _TYPE_ and _FREQ_; 
 PROC MEANS 
 DATA=SUGI.ELEC_ANNUAL(WHERE=(REGION IN('WESTERN','SOUTHERN') 
           and  SUBSTR(RATE_SCHEDULE,1,2) = 'E1')) ; 
VAR TOTKWH; 
CLASS REGION RATE_SCHEDULE; 
OUTPUT OUT=SUGI3 MEAN= SUM= MEDIAN=/AUTONAME; 

 
The output data set looks like this: 
 
 
 
 
 
 
 

SUGI 29 in Montreal 
Steps to Success with PROC MEANS 
Step 10: Using the AUTONAME Option 
 
                                           totkwh_    totrev_    tothrs_ 
Obs    _TYPE_    _FREQ_     totrev_Sum       Sum        Mean      Median 
 
 1        0       16364    11635590.67    98910183    736.803      8760 

Step 11: Understanding _TYPE_ and _FREQ_ 
 
                         rate_                           totkwh_     totkwh_    totkwh_ 
Obs    REGION           schedule    _TYPE_    _FREQ_      Mean           Sum     Median 
 
  1                                    0       5645      5504.87    31003426     4731.0 
  2                       E1           1       5129      5420.69    27732272     4760.0 
  3                       E1C          1         16      8725.25      139604     7704.0 
  4                       E1L          1        452      4620.81     2088608     4209.5 
  5                       E1M          1         48     21727.96     1042942     8301.0 
  6    SOUTHERN                        2        690      6483.30     4473474     5825.5 
  7    WESTERN                         2       4955      5368.26    26529952     4633.0 
  8    SOUTHERN           E1           3        556      6781.49     3770511     6175.0 
  9    SOUTHERN           E1C          3          9     11144.33      100299     9789.0 
 10    SOUTHERN           E1L          3        122      4582.08      559014     4424.0 
 11    SOUTHERN           E1M          3          3     14550.00       43650    14550.0 
 12    WESTERN            E1           3       4573      5254.77    23961761     4648.5 
 13    WESTERN            E1C          3          7      5615.00       39305     5615.0 
 14    WESTERN            E1L          3        330      4635.13     1529594     4177.0 
 15    WESTERN            E1M          3         45     22206.49      999292     8002.0 

  SUGI 29   Tutorials



11 

The data set at the bottom of the previous page gives us a very clear idea of what information is contain in the 
“automatic” variables _TYPE_ and _FREQ_.  First, _FREQ_ shows us the number of observations in the input, or 
source data set, that were used to calculate the analyses in that observation (row) in the output data set.  For 
example, there were 45 observations from ELEC_ANNUAL that had a value of REGION equal to WESTERN and a 
value of RATE_SCHEDULE equal to E1H.  These 45 observations were used to calculate the SUM, MEAN and 
MEDIAN of TOTKWH shown in the last row of the PROC PRINT output. 
 
The variable _TYPE_ identifies the combination of classification variables whose values were used to create the 
analyses in that observation in the output data set.  By default, _TYPE_ is a numeric variable (unless you have more 
than 32 classification variables, in which case it is a character variable, as discussed below). The first observation, 
with _TYPE_ = 0, is the “grand” or “overall” analysis without regard to the values of the classification variables.  
Observations with _TYPE_ = 1 give the analysis by RATE_SCHEDULE without regard to REGION, _TYPE_ = 2 are 
the analyses by REGION without regard to RATE_SCHEDULE, and _TYPE_ = 3 are the analyses at all possible 
combinations of the values of both REGION and RATE_SCHEDULE. 
 
With just one classification variable you will have two values of _TYPE_ (zero and one).  When you have two 
classification variables you get four values, and with three you will have eight values.  By now you’ve probably figured 
out that the number of values of _TYPE_ in your output data set is equal to 2N, where N is the number of 
classification variables.   
 
Step 12: Use the NWAY Option 
 
In many analytic situations you’ll only want observations in the output data set that have the highest possible value of 
_TYPE_ given the number of classification variables.  For example, suppose in the analysis shown in Step 11 you 
just want observations with _TYPE_ = 3 (those at all possible combinations of the values of REGION and 
RATE_SCHEDULE).  Adding the NWAY Option to your PROC MEANS Statement limits the placement of 
observations in your output data set to just those where, in this example, _TYPE_ = 3.  [To make room for other 
output, an example of implementing the NWAY Option is not presented in this paper.] 
 
Step 13:  Use the CHARTYPE Option to Facilitate Creating Multiple Output Data Sets in a Single PROC 
MEANS Task  
 
You can use multiple OUTPUT Statements in a single PROC MEANS task to create several output datasets with 
different analyses at different combinations of the classification variables.  This is clearly more efficient than writing 
(and running) multiple PROC MEANS tasks against the same data set.  Instead, what we can do is write multiple 
OUTPUT statements, and use the WHERE clause SAS data set option to direct placement of the PROC MEANS-
generated observations in to the data sets you need.  For this example we’ll switch over to the CARD_TRANS data 
set.  The classification variables are CARDTYPE, TRANS_DATE and TRANS_TYPE and the analysis variable is 
CHARGE_AMOUNT.   
 
With three classification variables we are going to have eight values of _TYPE_, numbered zero (0) to seven (7).  
Suppose we want to create a data set with the analysis just by CARD_TYPE, one by CARD_TYPE and 
TRANS_TYPE, and another one by TRANS_DATE and CARDTYPE and, finally one with the analysis by 
CARD_TYPE, TRANS_DATE a TRANS_TYPE.  We can create all four in one PROC MEANS task (rather than in 
four separate tasks) and by using the CHARTYPE option (added in SAS Version 8)  in the PROC MEANS statement, 
facilitate output of observations from memory in to the four desired data sets without having to know the numeric 
value of _TYPE_ corresponding to the observations we want output to the different data sets.   
 
To fix ideas, let’s first look at the PROC MEANS task: 
 

PROC MEANS NOPRINT DATA=SUGI.CARDTRANS2; 
CLASS TRANS_DATE TRANS_TYPE CARD_TYPE; 
VAR CHARGE_AMOUNT; 
OUTPUT OUT=SUGI4 MEAN=/AUTONAME; 
run; 
 

By running this task, PROC MEANS will output all observations it creates to temporary data set SUGI4.  But, what we 
really want are four separate SAS data sets, each with the MEAN of CHARGE_AMOUNT at different combinations of 
the variables in the CLASS statement.  How do we do this?  Well, the easiest way would be to create four separate 
OUTPUT statements, and use the WHERE clause data set option to direct the output of the observations PROC 
MEANS creates to the four data sets.  The CHARTYPE option converts the (default) numeric value of _TYPE_ in to a 

  SUGI 29   Tutorials



12 

character variable whose values are a series of zeros and ones corresponding to the position of the variables in the 
CLASS statement.  Using the CHARTYPE option makes it much easier to take advantage of PROC MEANS’ ability to 
create multiple output data sets than if you had to figure out the default numeric value.  Here’s how it works: 
 

PROC MEANS NOPRINT DATA=SUGI.CARDTRANS2 CHARTYPE; 
CLASS TRANS_DATE TRANS_TYPE CARD_TYPE; 
VAR CHARGE_AMOUNT; 
OUTPUT OUT=A(WHERE=(_TYPE_ = '001')) MEAN=/AUTONAME; 
OUTPUT OUT=B(WHERE=(_TYPE_ = '011')) MEAN=/AUTONAME; 
OUTPUT OUT=C(WHERE=(_TYPE_ = '101')) MEAN=/AUTONAME; 
OUTPUT OUT=D(WHERE=(_TYPE_ = '111')) MEAN=/AUTONAME; 
RUN; 

 
Since we have three classification variables, the value of _TYPE_ is a three-byte character variable (again, because 
the CHARTYPE option was supplied in the PROC MEANS statement).  The first position corresponds to 
TRANS_DATE, the first (left-most) variable in the CLASS statement.  The second position corresponds to 
TRANS_DATE and the third position corresponds to CARD_TYPE.  For example, when _TYPE_ = ‘001’ we are 
identifying observations where the variable CHARGE_AMOUNT is being analyzed by the values of the classification 
variable CARD_TYPE. 
 
Other Steps 
 
There are many other Steps to Success with PROC MEANS that you can learn about from the Procedure’s 
documentation.  
 
Conclusion 
 
In this paper I have identified what I think are twelve key Steps to Success that you can use to have PROC MEANS 
create the analyses and data sets you need from your data sets.  They offer what I hope is a comprehensive insight 
in to how the take advantage of the procedure’s functionalities.   
 
Acknowledgements 
Thanks to Robert Ray of SAS Institute's BASE Information Technology group for his insights in to PROC MEANS and 
many of the enhancements added to it in Version 8.  Also, thanks to the many people who have attended my 
"Summarizing and Reporting Data Using the SAS System" seminar who have made comments or asked questions 
that challenged me to learn more about PROC MEANS.  
 
Author contact 
  
Andrew H. Karp 
President 
Sierra Information Services, Inc. 
19229 Sonoma Highway PMB 264 
Sonoma, California  94115 USA 
707 996 7380 
SierraInfo@AOL.COM 
www.SierraInformation.com 
 
Copyright  
 
SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS 
Institute Inc. in the United States of America and other countries. ® indicates USA registration.  Other brand or 
product names are registered trademarks or trademarks of their respective companies. 
 

  SUGI 29   Tutorials


	SUGI 29 Proceedings Table of Contents

