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Abstract

This article presents recent research on profit maximization under logit demand. Logit demand models
represent a popular tool in discrete choice literature, and a computationally tractable methodology to
solve the share equations that result was developed in the early 2000s. This methodology makes use of the
LambertW equation, and once it is implemented, the profit maximizing price can be found using popular
statistical tools such as R Studio, Python, and MATLAB. Current research in this field is investigating
a generalized methodology to solve for the profit maximizing price under nested logit models as well.1

1The author would like to thank Joseph Podwol, Jeff Qiu, and Robert Draba for their helpful comments and constant
support for this article. All errors are my own.
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1 Introduction

Since the late 1970s, discrete choice models have become increasingly popular tools to estimate consumer
demand. These models represent flexible, easily implementable mathematical representations of systems,
and since 2000, multiple extensions have been developed to better model realistic consumer behavior.

1.1 Literature Review

A “discrete choice” model is a mathematical tool that simulates the likelihood that an individual will choose
one of multiple options. These options can be for truly anything, and researchers have used these models to
study such varied products as residential housing choices2, ground coffee3, automobile manufacturing4, and
breakfast cereals5. [Need to add detail on the discete choice literature.]

1.2 The Logit Demand Discrete Choice Model

A key characteristic of a discrete choice model is the inclusion of two product-specific parameters. In this
paper, we will express these parameters as a and b. Here, a represents the “utility” for the consumer, and b
represents the “price coefficient.” In this way, the value a consumer, say Jane, receives from the product or
the “utility” can be modeled in the following way:

UJane = aJane + bJanep

Here, we are adding Jane’s utility a to Jane’s price coefficient b multiplied by the price p. Usually, the
price coefficient is negative, but this doesn’t need to be the case. Aggregating these utility functions over
many consumers, we can fit a model to all consumers’ utilities that takes the following form:

U = a+ bp+ ε

This is exactly the same equation, but we have now taken the average of all consumers’ utilities and
their price coefficients. To that end, we refer to a as the “mean utility”, and we add an error term ε to this
equation to account for idiosyncrasies among particular consumers.

These parameters allow for semi-realistic simulations of consumer choice. Consumers choose products
based on their personal valuations, and this valuation is captured in the mean utility variable a. Furthermore,
the price has some impact on each consumer’s decision, and the importance of the price is captured by the
price coefficient b. Using datasets that indicate how many individuals purchased each product at different
prices, we can estimate the values of a and b, and this information can inform us as analysts and policy
makers on what consumers actually want.

Notably, these parameters circumvent the need to use survey data to understand consumers’ preferences.
Discrete choice models rely on “revealed preference,” which is to say that they model consumers’ values
based on what they are choose, not what they claim that they would choose.

We can mathematically derive the share equations for each option available to consumers in a general
discrete choice problem using this setup. These derivations are outside the scope of this paper, and we will
instead focus on the “logit” model in this paper. The logit discrete choice model is a shorthand way of saying
that the error term in the equation is distributed according to a multivariate extreme value. When this is
the case, the share equations have closed form solutions of the following form:

si =
exp(ai + bipi)

exp(ai + bipi) + exp(aj + bjpj)

In this case, a consumer has two choices i and j. The share of option i, or the probability that a consumer
will choose option i, can be given be the equation above which is the exponential of the mean utility plus

2See McFadden 1978
3See Guadagni and Little, 1983
4See Berry, Levinson, and Pakes 1995
5See Nevo, 2001
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the price coefficient multiplied by the price of option i, divided by this value plus the exponential of mean
utility plus the price coefficient multiplied by the price of option j.

A key feature of the logit demand discrete choice model is the ease with which it can be scaled. Discrete
choice models implicitly model multiple options, and thus they lend themselves to systems in which the total
options range from 5 options to 500 options. In the logit model, this can be completed straightforwardly by
adding the exponential values to the denominator of each share function.

With this background in mind, this article describes the logit demand model and demonstrates a method-
ology to find the profit maximizing price under its assumptions. A closed form solution to this problem was
discovered in the early 2000s, and this represents a particularly useful application for businesses.

The rest of this article is organized as follows. Section 2 provides a methodology for solving for the
Bertrand-Nash equilibrium and profit maximizing price under logit demand with two firms and no outside
good. Section three generalizes this model to solve for the equilibrium with N firms. Section four generalizes
this further to solve for the equilibrium withN firms under a nested logit demand model. Section five provides
a summary of these results. A discussion of the convergence methodology and additional derivations are
provided in the Appendices, and code to solve for the profit maximizing price under logit demand is provided
on github.

2 Bertrand-Nash Duopoly Equilibrium under Logit Demand

2.1 Problem Setup

Let’s set up the Bertrand-Nash equilibrium problem with two firms under a logit demand discrete choice
model. Suppose that there are two coffee shops in downtown Washington, D.C.: Starbucks and Dunkin
Donuts. Let’s go ahead and assume that these companies do not engage in price discrimination and there
is no cost associated with switching to a different coffee shop. Additionally, all government employees are
addicted to coffee, so consumers cannot choose to not drink coffee. Thus, government employees in this area
have only the following two coffee options:

1. Starbucks coffee

2. Dunkin coffee

In addition to the imaginary scenario we have set up, let’s assume that no one is buying coffee from both
Starbucks and Dunkin Donuts. Also, Starbucks and Dunkin are not colluding, and each company wants to
maximize its profits in downtown D.C.

2.2 Logit Demand Setup

We now consider the pricing problem faced by these two competing coffee shops, and we treat their products
as imperfect substitutes in the minds of the government employees in the Washington D.C. area.

Let sS denote the fraction of government workers N that chooses Starbucks and let sD denote the fraction
that chooses Dunkin Donuts. These shares can be interpreted as Starbucks and Dunkin Donuts’ “market
shares”. A logit representation of these shares is:

sS =
exp(aS + bSpS)

exp(aS + bSpS) + exp(aD + bDpD)

sD =
exp(aD + bDpD)

exp(aS + bSpS) + exp(aD + bDpD)

Here, a represents the hypothetical “mean utility” that a consumer receives from buying coffee, and b
represents the hypothetical “price coefficient,” or a quantitative measurement of how much the price matters
to the consumer. Note that the price coefficient is always negative by assumption in this model.

In addition to these market share equations, we know that each company in this model has a profit
equation of the following form:
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π = (p− c)Ns

Here, the profit denoted by π is equal to the price charged per unit of coffee minus the cost of the coffee,
multiplied by the firm’s share and the total size of the market.

In a typical economic or antitrust analysis, the main intent of this model would be to estimate the
consumer parameters aS , bS , aD, and bD. Usually, data would provide the market shares, prices, and costs.
Given these values, we could solve the equations above for the consumer parameters. This type of analysis
could inform our understanding of how much consumers value coffee through the mean utility parameter
a and how important the price is when they make their decisions as indicated by the value of the price
coefficient b.

On the other hand, we can also use this model to calculate the market equilibrium. Instead of using
observed data to estimate the shares to solve these equations, we could estimate the consumers’ utilities
and price sensitivities to solve these equations for the market shares. In this way, we could decide what the
hypothetical consumer values aS , bS , aD, and bD should be and solve for the market shares using those values.
Then, if we further choose hypothetical costs to the firms, we can even calculate what the profit-maximizing
prices, shares, and profits would be in equilibrium given all of these assumptions.

This second option represents an extremely useful tool for firms. Companies such as coffee shops may
need to regularly adjust prices based on their own costs and limited information about their competitors
prices. The logit model provides an ideal tool to predict optimal pricing levels given this limited information.
Furthermore, the mean utility parameters and the price coefficients are very flexible, so analysts can attempt
different combinations of these variables in order to tweak consumer demand in realistic ways.

With that, the rest of this section outlines how to solve for the profit-maximizing prices under logit
demand given consumer values and costs to firms. You can go ahead and assume the following values:

1. aS = 6, bS = −0.8, cS = 1.50

2. aD = 5, bD = −1, cD = 1.25

3. N = 1000

Here, we are assuming that the average consumer receives 6 utility from a Starbucks coffee, Starbucks’s
price coefficient is -0.8, and it costs Starbucks $1.50 to make a coffee. Furthermore, the average consumer
only receives 5 utility from a Dunkin Donuts coffee, Dunkin’s price coefficient is -1, and it costs Dunkin $1.25
to make a coffee. Finally, we are assuming that there are 1000 government employees buying coffee.6

So, what do we need to do in order to find the equilibrium prices and profits? We can start by writing
each firm’s profit function:

πS = (pS − cS)NsS

πD = (pD − cD)NsD

Breaking these equations down, each firm’s profit denoted by π is equivalent to its price minus its cost
multiplied by the number of consumers in the market multiplied by the firm’s share. This can be more easily
interpreted as the amount of money each firm makes on each coffee, multiplied by the number of coffees it
sells.

2.3 Geometric Setup

Let’s develop some intuition for this problem by looking at it geometrically. Let’s assume that Dunkin’s
price is set to $3.00. Plugging $3.00 into Starbucks’s profit equation above, we can graph Starbucks’s profit
as Starbucks changes its price:

6Note that the size of the market N is really just a scaling factor. We can think of this more realistically as 10,000 government
employees in the downtown D.C. area, but this parameter does not actually impact the equilibrium prices.
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Here, Starbucks’s profit maximizing price occurs near the $4.55 mark, and Starbucks’s market share
is 58.9%.7 Therefore, if Starbucks were to face a price of $3.00 from Dunkin (and if Starbucks assumed
the same mean utility and price coefficient parameters that we set above), then Starbucks would know
that its best strategy would be to charge $4.55 for each cup of coffee. This would lead to a profit of
($4.55− $1.50) ∗ 1000 ∗ .589 = $1, 796.45 for Starbucks and a profit of ($3.00− $1.25) ∗ 1000 ∗ .411 = $719.25
for Dunkin Donuts.8

This example illustrates how we want to find the profit maximizing price, but how can we achieve this
when both firms can change their prices in response to the other firm? In the slice above, Starbucks knew
that Dunkin would price at $3.00 and it could respond accordingly. Let’s consider a few different options.
In the figure below, we see five curves that illustrate Starbucks’s profit curve when Dunkin prices at $2.00,
$2.50, $3.00, $3.50, and $4.00:

From these curves, we can see that Starbucks should price lower when Dunkin prices lower, and Starbucks

7We calculated Starbucks’s market share by plugging these two prices into Starbucks’s share equation above.
8Notice that if Starbucks were to match Dunkin’s price of $3.00, then Starbucks and Dunkin would have an equivalent profit

of ($3.00 − $1.50) ∗ 1000 ∗ .50 = $750.00. Therefore, Starbucks can actually do better if it chooses to price higher than Dunkin.
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should price higher when Dunkin prices higher. The question is, how should Starbucks choose its price when
it doesn’t know how Dunkin will price? At best, Starbucks has an approximate guess of where Dunkin is
going to price, but it has no idea which of these prices Dunkin will choose.9

To make things more complex, Dunkin is actually trying to do the same thing with Starbucks’s price,
and this implies that the two coffee shops are actually changing their prices at the same time. Dunkin might
choose $3.00, then realize that Starbucks is undercutting them with a price of $2.75 and then change their
price to $2.50, and Starbucks might react after that as well. The key point here is that both firms will try
to maximize their profits depending on the other firm’s price, and we want to know where the “equilibrium”
is. That is, eventually the two firms will stop undercutting each other and choose a set of prices at which
neither can lower their price without being worse off. The question is, what is that set of prices?

To answer this question, we want to maximize the profit functions for each firm. Firms want to make
the most money they can given the fact that other firms will try to do the same. Mathematically, we can
write this as:

p∗S = argmax
pS

(pS − cS)NsS

p∗D = argmax
pD

(pD − cD)NsD

Here, we just rewrote the equations above with the ”argmax” operator with respect to pS and pD. This is to
say that we want to know the values of pS and pD that return the highest outputs of the profit functions. We
know that at the equilibrium, the values of p∗S and p∗D are exactly the profit maximizing prices for Starbucks
and Dunkin. Note that here, the ∗ indicates that these values for pS and pD are the highest profit-yielding
choices for the two coffee shops.

2.4 Algebraic Setup

So, this begs the question of how to find the maximum outputs of these two profit functions in two variables.
We will find where these profit functions change from increasing to decreasing, and then we will find the
intersection of profit maximizing choices for Starbucks and Dunkin. As you may have guessed, this implies
that we will take the First Order Conditions of both profit functions, and then we will solve these two
equations for the profit maximizing prices. That is, we will find where the derivatives of these functions are
equal to 0, and then we will solve the system of equations that results.

Let’s look at the derivative of each of the coffee shops’ profit functions. Notably, these are functions of
two variables. Returning to your multi-variable calculus days, you may recall that the partial of an equation
of two variables f(x, y) = x2 + y2 is:

fx(x, y) = fx =
∂f

∂x
=

∂

∂x
f(x, y) = 2x

Recognizing that our profit functions are also equations of two variables (π = f(pS , pD) if you were keeping
track), we have the following partial derivatives:10

∂πS
∂pS

= NsS +N
∂sS
∂pS

(pS −MCS)

∂πD
∂pD

= NsD +N
∂sD
∂pD

(pD −MCD)

Setting these equal to 0, we have:

0 = NsS +N
∂sS
∂pS

(pS −MCS)

0 = NsD +N
∂sD
∂pD

(pD −MCS)

9See Appendix 1 for Starbucks’s three-dimensional profit surface.
10Note that we are not taking the total derivatives of the Starbucks and Dunkin’s profit functions. While the derivative of

Starbucks’s profit with respect to Dunkin’s price does exist, we don’t particularly care what this value is. This is a real-world
example, and in the real world, Starbucks and Dunkin each only have control over their own prices. Since Starbucks can’t
change Dunkin’s price, it doesn’t make sense to model Starbucks’s profit with respect to Dunkin’s changing price.
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We just need to solve these two equations to get what we need. We have two equations, are our two unknowns
are pS and pD. Let’s go ahead and solve these equations for pS and pD:

p∗S = MCS −
(
∂sS
∂pS

)−1
· sS

p∗D = MCD −
(
∂sD
∂pD

)−1
· sD

One problem though - you will note that these equations are still in terms of sS and sD, and these terms
are in fact functions of pS and pD. Specifically, the equations for the shares sS and sD are exponential
equations of pS and pD. While these derivatives are easy enough to calculate and put into their respective
equations, you will find that it is in fact impossible to algebraically solve for pS and pD not in terms of
sS and sD. The technical term for this is that there is no “closed form” solution for these equations. In
principle, we have two equations and two unknowns, but we can’t solve for the profit maximizing prices in
a straightforward manner.

Instead of solving these equations directly, we will approach them using the “guess and check” method.
The idea of this methodology is to try prices essentially at random until we find a ”fixed point” of the
function, or the point at which the function stops changing. We will conduct this in an iterative fashion -
that is, we will try a set of prices (pS0 , pD0) on the right hand side of the equation and we will calculate the
resulting (p∗S , p

∗
D). Then, we will calculate the distance between (pS0 , pD0) and (p∗S , p

∗
D). Once this distance

is less than a very small number (say 0.00001), we will be able to safely assume that we have reached a ”fixed
point” and that the resulting (p∗S , p

∗
D) are the profit-maximizing prices.11

2.5 Solve for the Profit Maximizing Prices

Now that the methodology is set, let’s calculate the derivatives
(
∂sS
∂pS

)−1
, and

(
∂sD
∂pD

)−1
:

(
∂sS
∂pS

)−1
=

(
bS · exp(aS + bSpS) · exp(aD + bDpD)

(exp(aS + bSpS) + exp(aD + bDpD))2

)−1
=

(exp(aS + bSpS) + exp(aD + bDpD))2

bS · exp(aS + bSpS) · exp(aD + bDpD)(
∂sD
∂pD

)−1
=

(
bD · exp(aD + bDpD) · exp(aS + bSpS)

(exp(aS + bSpS) + exp(aD + bDpD))2

)−1
=

(exp(aS + bSpS) + exp(aD + bDpD))2

bD · exp(aD + bDpD) · exp(aS + bSpS)

With these, the profit maximizing equations to solve are:

p∗S = MCS −
(
bS · exp(aS + bSpD) · exp(aD + bDpD)

(exp(aS + bSpS) + exp(aD + bDpD))2

)−1
· sS

p∗D = MCD −
(
bD · exp(aD + bDpD) · exp(aS + bSpS)

(exp(aS + bSpS) + exp(aD + bDpD))2

)−1
· sD

At this point, we could enter these equations into a computer program and use the ”guess and check”
methodology described above to solve the equations. However, this is an extremely finicky procedure in
practice. Solving systems of nonlinear equations is always a challenge, and we can in fact use a mathematical
trick to make this an easier problem to solve.

11See Appendix 2 for a more robust description of this procedure. This represents a computationally tractable way to approach
this problem in a common programming language such as R or Python, however, there are numerous other approaches to solving
systems of non-linear equations that could be useful here as well. For example, the “nleqslv” package in R could be used, or
the “optim” command in base R would be another viable option to maximize these equations.
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Let’s put the profit maximizing price for Starbucks into a more workable form. Starting from the equation
above, we have:

p∗S = MCS −
(
bS · exp(aS + bSpS) · exp(aD + bDpD)

(exp(aS + bSpS) + exp(aD + bDpD))2

)−1
· sS

= MCS −
(
bS · exp(aS + bSpS) · exp(aD + bDpD)

(exp(aS + bSpS) + exp(aD + bDpD))2

)−1
· exp(aS + bSpS)

exp(aS + bSpS) + exp(aD + bDpD)

= MCS −
(

(exp(aS + bSpS) + exp(aD + bDpD))2

bS · exp(aS + bSpS) · exp(aD + bDpD)
· exp(aS + bSpS)

exp(aS + bSpS) + exp(aD + bDpD)

)

= MCS −

 (exp(aS + bSpS) + exp(aD + bDpD))�2

bS ·(((((
((

exp(aS + bSpS) · exp(aD + bDpD)
· ((((

(((exp(aS + bSpS)

(((
((((

(((
((((

((

exp(aS + bSpS) + exp(aD + bDpD)


= MCS −

(
exp(aS + bSpS) + exp(aD + bDpD)

bS · exp(aD + bDpD)

)
= MCS − 1

bS · sD

= MCS − 1

bS
· 1

sD

In the final expression, we know that the shares sS and sD sum to 1. With that in mind, we can make
the following substitution:

p∗S = MCS − 1

bS
· 1

sD

= MCS − 1

bS
· 1

1 − sS

= MCS − 1

bS · (1 − sS)

This hasn’t solved our problem yet, but we have now manipulated p∗S to appear in terms of Starbucks’s
own market share. Now, we will use the ”lambertW” function to find a closed form solution to this problem.
The lambertW function, also called the omega function, was developed by Johann Heinrich Lambert in 1758,
and it takes the following form:

W (x)eW (x) = x

Using algebraic manipulation and the lambertW function, we can rewrite the optimal price equations
above in closed forms as:

p∗S = MCS −
1 +W

(
exp(aS−1+MCS ·bS)

exp(aD+bD·pD)

)
bS

p∗D = MCD −
1 +W

(
exp(aD−1+MCD·bD)

exp(aS+bS ·pS)

)
bD

A proof of this equality is provided in Appendix 3, and we will solve these equations using the guess and
check methodology described above. The lambertW function can be approximated very accurately, so this
is a much more easily solved system of non-linear equations.

Solving these equations for p∗S and p∗D, we find that the profit maximizing prices for Starbucks and Dunkin
are $4.52 and $2.96, respectively. We can graphically confirm this by looking at the two coffee shops’ prices
graphically below:
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When Starbucks faces a price of $2.96 from Dunkin, Starbucks will maximize its profit when it prices at
$4.52. Conversely, when Dunkin faces a price of $4.52 from Starbucks, Dunkin will maximize its profit when
it prices at $2.96. Both firms would see a lower profit from this point, so we have found the Bertrand-Nash
equilibrium for these firms with these consumer parameters.

3 Bertrand-Nash Equilibrium with N Firms under Logit Demand

3.1 Setup

Now that we have a strategy in place to solve for the profit maximizing price, let’s expand this methodology
to solve for the profit maximizing price with N firms. Rather than just considering Starbucks and Dunkin
Donuts as coffee options, we now consider there to be any number of firms N from which consumers can
choose to buy coffee in downtown D.C. In this generalized case, the share of firm i can be calculated in the
following equation:

si =
exp(ai + bipi)∑N
j=1 exp(aj + bjpj)

Here, we are dividing the exponential of firm i’s value by the sum of the exponentials of the values of all
firms in the market.

Note that if there is an ”outside good” assumed to be in the market with a value of 0, then the mean
utility for the outside good will typically be a = 0 and the price will be 0. Therefore, the valuation of the
outside good will be exp(0−b0 ·0) = e0 = 1. An example with an outside good included will often be written
with this assumption with the following form:

si =
exp(ai + bipi)

1 +
∑N
j=1 exp(aj + bjpj)

This would be different if we were to assume that the outside option had some value as well, but assuming
that the outside option has a value of 0 is a very common assumption.

3.2 Algebraic Setup

We can set up the profit function for firm i in a very similar manner to the duopoly example. The profit
function for coffee shop i is:

πi = (pi − ci)Nsi
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As in the two firm case, we need to take the first order condition of the profit function for each firm in
order to solve for the profit maximizing prices. Taking the derivative of the profit function for firm i with
respect to pi, we have:

∂πi
∂pi

= Nsi +N
∂si
∂pi

(pi −MCi)

Setting this equal to 0, we have:

0 = Nsi +N
∂si
∂pi

(pi −MCi)

Solving for firm i’s profit maximizing price, we have:

p∗i = MCi −
(
∂si
∂pi

)−1
· si

3.3 Solving for the Profit Maximizing Price

With this we need to solve the system of nonlinear equations with N equations where each equation is of
the following form:

p∗i = MCi −

(
bi ·

exp(ai + bDpD)∑N
i=1(exp(ai + bipi))2

)−1
· si

Applying the lambertW function from above, the closed form solution for the profit maximizing price
under logit demand for firm i is given by:12

p∗i = MCi −
1 +W

(
exp(ai−1+MCi·bi)∑j

i6=j exp(aj+bj ·pj)

)
bi

Notably, as the number of firms N approaches infinity, the second term in the equation above approaches
0. At that point, the optimal price of firm i would be equal to its marginal cost.13

4 Introduction to Nested Logit Models

4.1 Introduction

In addition to finding the profit maximizing price with any number of firms, we can also find the profit
maximizing price under a nested logit model. A ”nested” logit model is very similar to the standard logit
model described above, but in addition to comparing different products, the nested logit model allows
products to be grouped into different “nests” based on their similarity.

Let’s build some intuition for this problem by tweaking the duopoly example from before. In the original
case, we looked at two products: a coffee from Starbucks and a coffee from Dunkin. In the real world though,
there are many more options than standard coffee at each of these stores. Customers could pick several types
of coffee drinks including mochas, cappuccinos, lattes, and standard coffees among others. This could quickly
spiral into a very long list if we were to include every permutation of every coffee drink these stores sell, so
for this example, we are just going to stop there. Suppose that Starbucks sells these four types of coffees,
and and Dunkin sells three of these four options: mochas, lattes, and standard coffees.

Normally, we think of market shares with respect to firms. That is to say that when we analyze these two
coffee shops, we would typically be interested in Starbucks’s market share and Dunkin’s market share. How
can we calculate market shares when each of these stores sells multiple types of coffee? In fact, each store’s
market share is comprised of the shares of each of the products it sells. When we assume that Starbucks and
Dunkin Donuts each only sell standard coffee, then each company only sells one product and each company’s

12See Appendix 3 for derivation.
13Also of note: in the monopoly case, the denominator of the lambertW function is e0 = 1.
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market share is equal to the share of its own coffee. When we assume that each firm sells two types of coffee,
then each company sells two products and each company’s market share is equal to the sum of the shares of
the two types of coffee it sells.

Because each product actually has its own market share, we actually need to set up as many share
equations as the number of products. In this example, we have two coffee shops with four types of coffee at
Starbucks and three types of coffee at Dunkin. Therefore, we need seven share equations in total.

Recognizing that we need seven market share equations in total, let’s begin by just setting up the share
equation for a Starbucks mocha in this world. Here, we need to look at the share of a Starbucks mocha
within the mocha “nest”:

sSMocha = sS|Mocha · sMocha

In this equation, the share of a Starbucks mocha is equal to share of the Starbucks mocha in the mocha
“nest” multiplied by the share of mochas in the entire world of coffee. For example, if 20% of all coffee sales
were mochas and consumers chose the Starbucks mocha 50% of the time over the Dunkin mocha, then this
share equation would be:

sSMocha = sS|Mocha · sMocha

= 0.50 · 0.20

= 0.10

In this way, the share of a Starbucks mocha would be 10% over the entire coffee market. Similarly,
Starbucks lattes, cappuccinos, and standard coffees would all have their own shares in the entire market,
and we could sum all of these to find Starbucks’s total market share and total profit.

4.2 Share Equation Breakdown

Let’s break down the share equation from above. In that formula, we set up two terms: the share of a
Starbucks mocha within the mocha “nest” sS|Mocha and the share of mochas in the overall market SMocha.
We can model the first term explicitly in the equation below:

sS|Mocha =
exp(aS+bS ·pS

σMocha
)

exp(aS+bS ·pS
σMocha

) + exp(aD+bD·pD
σMocha

)

This is very similar to the share equation for one product that we considered before. Here, we are
dividing the exponential of the sum of the consumer parameters and dividing by the sum of the exponentials
of consumer parameters of all products in this nest. In this case there are exactly two products in the mocha
“nest”, and they are a Starbucks mocha and a Dunkin mocha.

Notably, there is one additional parameter σMocha that was not present in the original logit demand
example. This is called a “nesting parameter,” and we assign each nest its own nesting parameter between
0 and 1. Intuitively, we are dividing each consumer valuation by a fraction which is increasing the valuation
by some amount. Smaller values of σMocha lead to higher overall valuations, than larger values of σMocha,
and because the valuation of each product in the mocha ”nest” is divided by σMocha, each valuation for the
nest is “scaled” by the same amount.

This “nesting parameter” approach provides a mathematical way to account for the fact that some
products are better substitutes than others. Consumers’ valuations of a mocha from Starbucks and a mocha
from Dunkin will be “scaled” by the same amount and will be slightly closer in terms of their values than
consumers’ valuations of lattes. If the price of a Starbucks mocha increases, then a consumer might switch
to a Dunkin mocha as that might be the closest substitute. Alternatively however, consumers might choose
to switch to a latte from Starbucks instead because lattes are less expensive. This represents a very flexible
model that can incorporate any number of products, and products could be grouped in to nests in numerous
ways.14

14Here, we are grouping types of coffees into nests. This assumes that a mocha from Starbucks is a better substitute for a
mocha from Dunkin than a latte is. Alternatively, we could group all Starbucks products into a nest. This would imply that
a mocha from Starbucks is a better substitute for a latte from Starbucks than a mocha from Dunkin. This might be a more
realistic model if consumers are unlikely to go to leave Starbucks to go to Dunkin Donuts instead.
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Now that we’ve walked through the explicit formula for sS|Mocha, let’s turn to the explicit formula for
sMocha:

IMocha = log

(
exp

(
aSMocha + bSMocha

σMocha

)
+ exp

(
aDMocha + bDMocha

σMocha

))
sMocha =

exp (σMocha · IMocha)

exp(σMocha · IMocha) + exp(σLatte · ILatte) + exp(σCap · ICap) + exp(σCoffee · ICoffee)
These equations might look big and scary, but with a few rules about e and logarithms, they are actually

intuitively on par with what we’ve looked at before. IMocha is equivalent to the natural log of the sum of
the valuations of the mocha ”nest”. This is also the denominator of the share equation that we just set up
for sS|Mocha. Therefore, the numerator of the equation for sMocha is equivalent to the exponential of the
nesting parameter σMocha multiplied by IMocha. One useful trick with logarithms is provided below:

ec·log(e
a/c+eb/c) = (ea/c + eb/c)c

= ea + eb

Interestingly, σMocha cancels out, so we could rewrite the equation for sMocha:

sMocha =
exp(aSMocha + bSMocha · pSMocha) + exp(aDMocha + bDMocha · pDMocha)

exp(σMocha · IMocha) + exp(σLatte · ILatte) + exp(σCap · ICap) + exp(σCoffee · ICoffee)

This should intuitively make sense. Once we’ve grouped products into their respective nests, the valua-
tions of each nest do not require any σ nesting parameters.

4.3 Solving for Profit Maximizing Prices Under a Nested Logit Model

We have arrived at the frontier of research in terms of solving for the profit maximizing price under a nested
logit model. This model is extremely attractive as it approaches a real-world model design. The thing is,
this is again not a straightforward problem to solve. We have seven equations and seven unknowns, and
this time, we can’t use the lambertW function to ease the computational difficulty. Let’s set up the profit
equations for Starbucks and Dunkin to see why:

πS = (pSMocha − cSMocha) ·N · sSMocha + (pSCap − cSCap) ·N · sSCap+
(pSLatte − cSLatte) ·N · sSLatte + (pSCoffee − cSCoffee) ·N · sSCoffee

πD = (pDMocha − cDMocha) ·N · sDMocha + (pDLatte − cDLatte) ·N · sDLatte+
(pDCoffee − cDCoffee) ·N · sDCoffee

Starbucks and Dunkin want to maximize these profit equations with respect to the prices that they are
able to control. Starbucks has four prices that it can change, and Dunkin has three prices that it can change.
As such, we can mathematically write the profit maximization problems of these firms as:

p∗
S = (p∗SMocha, p

∗
SCap, p

∗
SLatte, p

∗
SCoffee)

p∗
S = argmax

p∗
S

[(pSMocha − cSMocha) ·N · sSMocha + (pSCap − cSCap) ·N · sSCap+

(pSLatte − cSLatte) ·N · sSLatte + (pSCoffee − cSCoffee) ·N · sSCoffee]

p∗
D = (p∗DMocha, p

∗
DLatte, p

∗
DCoffee)

p∗
D = argmax

p∗
D

[(pDMocha − cDMocha) ·N · sDMocha + (pDCap − cDCap) ·N · sDCap+

(pDLatte − cDLatte) ·N · sDLatte + (pDCoffee − cDCoffee) ·N · sDCoffee]

Notably, Starbucks and Dunkin no longer care about maximizing any individual price. For example, if
Starbucks mochas are priced very high at say $6.50 per cup and Starbucks lattes are priced very low at say
$3.50 per cup, then more customers will be driven to purchase lattes. It is possible that so many individuals
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would switch to lattes that this could actually increase Starbucks’s profit. In addition to Starbucks now
facing this multidimensional profit maximization problem, it is trying to maximize its revenue given Dunkin’s
multidimensional profit maximization choice as well.

This is an extremely difficult problem to solve. The model must compare every possible pricing option for
the two firms. From Starbucks pricing mochas at $10.00 and all other drinks at $1.00 while Dunkin charges
a flat rate of $2.50 for all drinks, to Starbucks and Dunkin both choosing to price all drinks at $4.50, every
permutation of prices must be considered. These profit equations are considered “high dimensional” as they
can have many different variables. This simple example is already seven-dimensional, and we haven’t even
considered additional types of coffee drinks or additional coffee shops in the market.

Research has shown that these high dimensional profit functions are not “quasi-concave” in p∗. That
is to say that under varying values of (p∗SMocha, p

∗
SCap, p

∗
SLatte, p

∗
SCoffee), there are multiple maxima and

minima of Starbucks’s profit function. Even if we were able to solve Starbucks’s profit equation in terms
of these four prices, we would end with a set of multiple possible profit-maximizing choices for the firms.
Instead of approaching this by analyzing price combinations, other research has approached this problem
by solving for the profit maximizing prices in terms of s∗, the vector of shares of each product. Still more
research has shown that these equations can be solved in terms of the “markup” of each nest. The markup
is defined as the price minus the cost of each product. This recent research shows optimistic possibilities for
solving these equations, but there is no simple way to solve them at this point.

4.4 Generalized forms of Nested Logit Equations

The consumer valuation for product i in nest h in a nested logit example takes on the following form:

Vi =
ai + bi · pi

σh

This is very similar to the previous valuation expression, but we have now included the σ parameter.
Here, each valuation for a product is divided by a σ parameter that identifies their nest. σ is always a value
between 0 and 1, and lower values correspond to higher overall valuations of the nest.

With this in mind, the share of product i in nest h is given by:

si = si|h · sh

si|h =
exp( Vi

σh
)∑H

k=1 exp(Vk

σh
)

sh =
exp(σh · Ih)∑H
l=1 exp(σl · Il)

5 The Other Way: Estimating a Logit Model with Simulated Data

5.1 Simulating Data

One final manipulation is that we can estimate a logit model using the optimal prices we found to recover
the consumer parameters with which we began.

A word of caution: The process we have outlined here takes advantage of a mathematical trick to solve a
system of nonlinear equations. Solving a system of nonlinear equations is always a challenge, and estimating
the values of the consumer parameters given the prices, shares, and margins is an imperfect science. That
being said, we will explore the “antitrust” package in R as one possible avenue to estimate this logit model.

Given the prices and shares, we could theoretically assign a proportion of all consumers each product
each product. Given a large enough sample size, we could take this one step further so that each consumer
values a cup of coffee at some amount that is taken from a uniform distribution between 0 and 1. To make
this even more realistic, we could add a normal random variable to each customer’s valuation so that it is
somewhat random how much the consumer wants the coffee.
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Given this setup, we could simulate each customer’s valuation of coffee and which coffee they chose to
buy. Given more information, we could take this one step further and create a set of fixed effect indicators
for each customer to estimate precise price sensitivities for different groups of customers.

While it is unlikely that simulating data in this way will ever be truly useful, it is possible, and once
you’ve simulated this data, you could then use a logit demand solver to calculate the consumer parameters
with which we began. One example of this type of solver is contained in the Antitrust R package. Here, the
“logit” function can calculate the average price coefficient and mean utility for any number of competitors
with a high degree of accuracy.

6 Conclusion

This article outlines how to find the profit maximizing price under logit demand. We can do this easily using
a mathematical trick in the system of nonlinear equations, and this greatly simplifies the calculations.

While discrete choice models are primarily used for market analysis, it could be easily be applied to many
other fields. For example, school choice, political choice, and employment choice could all be modelled as
discrete choice problems. Applications such as these could have interesting results in the future.

7 Appendix 1: Profit Surface in Duopoly Setting

From the duopoly example of Starbucks and Dunkin Donuts in Section 2, we can go one step further to
understand this problem geometrically. Below is the same plot from Figure 2 with Starbucks’s profit curve
at different settings of Dunkin’s price:

This indicates that when Dunkin prices low, Starbucks should also price low, and when Dunkin prices
high, Starbucks should also price high. Rather than looking at discrete values of pD, we can also model
Starbucks’s profit function in two variables pS and pD. In the figure below, Starbucks’s and Dunkin’s prices
are plotted along the x and y axes, and Starbucks’s profit is plotted on the z-axis. Here, Starbucks’s profit
increases as Dunkin and Starbucks increase their prices. When either of the two competitors’ prices are low,
the both competitors’ profits are low as indicated by the blue regions of the surface. On the other hand, if
both firms price high, then both will see higher profits as indicated by the red regions of the surface.

There are two important points on this surface. First is the point at the maximum of the red region
where Starbucks receives the most profit. At this point, Starbucks and Dunkin and both pricing as high
as possible, and this in fact represents the monopolist’s price. On the other hand, the lowest point on this
surface at the bottom left indicates the perfect competition price at which Starbucks and Dunkin both price
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at cost. With any discrete number of firms N > 1, Starbucks and Dunkin will both price somewhere on this
surface between these two points.

8 Appendix 2: Guess and Check Convergence Methodology

Let’s make this methodology slightly more tractable with a simple example. Say you had two linear equations
of two variables:

x =
y − 9

−2

y = 5 − x

These is a simple enough system of equations that you could solve it algebraically, but say that you
wanted to solve it by the guess and check method as we do in our logit problem. If you guessed values of
(x, y) = (3, 5), then you would have the following result:

3 =
5 − 9

−2
= 2

5 = 5 − 3 = 2

Checking the distance between these left hand side and the right hand side results, we have:

distance =
√

(y2 − y1)2 + (x2 − x1)2 =
√

(2 − 5)2 + (2 − 3)2 = 3.162

Now, if we tried new values of (x, y) = (3.99, 1.01) we could solve the equations again:

3.99 =
1.01 − 9

−2
= 3.995

1.01 = 5 − 3.99 = 1.01

Checking the distance between these left hand side and the right hand side results, we have:

distance =
√

(3.995 − 3.99)2 + (1.01 − 1.01)2 = .005

The distance between the second set of values we tried is small, and we could in fact try sets of values
that would allow us to get progressively closer to where the distance is 0. In this simple example, we can
algebraically solve the system of equations to find that (x, y) = (4, 1), but this illustrates how we’re going to
approach the logit problem when we can’t directly solve the system of equations.

One additional point is that we won’t exactly try values at random. In our model, the first values we try
will be random. After that though, we will always use the combination (xn−1, yn−1) as our next combination.
The table below shows the results of the iterative process for the linear example. Here, we iterate through
the formula 15 times, each time using the resulting value from the previous run:

iteration (xright, yright) (xleft, yleft) distance
1 (3, 5) (2, 2) 3.162
2 (2, 2) (3.5, 3) 1.803
3 (3.5, 3) (3, 1.5) 1.581
4 (3, 1.5) (3.75, 2) 0.901
5 (3.75, 2) (3.5, 1.25) 0.791
6 (3.5, 1.25) (3.875, 1.5) 0.451
7 (3.875, 1.5) (3.75, 1.125) 0.395
8 (3.75, 1.125) (3.938, 1.25) 0.225
9 (3.938, 1.25) (3.875, 1.063) 0.198
10 (3.875, 1.063) (3.969, 1.125) 0.113
11 (3.969, 1.125) (3.938, 1.033) 0.099
12 (3.938, 1.033) (3.984, 1.063) 0.056
13 (3.984, 1.063) (3.969, 1.016) 0.049
14 (3.969, 1.016) (3.992, 1.031) 0.028
15 (3.992, 1.031) (3.984, 1.007) 0.025
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With each iteration, the distance becomes smaller and (xright, yright) and (xleft, yleft) become closer.
After we iterate enough times, the distance between our trial values and the returned values approaches
0, and we can stop whenever we get past a very small threshold as we can safely assume that we have
approximated the solution.

This is precisely the methodology that we will used to find the profit maximizing prices in our logit
question. We will solve the profit maximizing equations as much as we can algebraically, and then we will
use a computer to iterate through possible price combinations until the price converges.

9 Appendix 3: Additional Derivations

9.1 Profit Maximizing Price with Two Firms

This derivation was liberally adapted from Ashwin Aravindakshan and Brian Rathford’s 2011 paper in
the Review of Marketing Science entitled “Solving Share Equations in Logit Models Using the LambertW
Function.” All credit is assigned to them for this incredibly useful result. From Section 2, let’s return to the
equation for Starbucks’s profit maximizing price in terms of Dunkin’s share:

p∗S = MCS − 1

bS · sD
From here, we can make the following substitutions to implement the lambertW function in this problem:

Proof.

p∗S = MCS − 1

bS · sD

= MCS − 1

bS · ( exp(aD+bS ·pD)
exp(aS+bS ·pS)+exp(aD+bD·pD) )

substitute the value of sD

= MCS − exp(aS + bS · pS) + exp(aD + bD · pD)

bS · exp(aD + bD · pD)

= MCS −
(

1

bS
+

exp(aS + bS · pS)

bS · exp(aD + bD · pD)

)
Multiplying both sides by bS and also subtracting aS from both sides, we have:

bS · p∗S − aS = bS ·
(
MCS −

(
1

bS
+

exp(aS + bS · pS)

bS · exp(aD + bD · pD)

))
− aS

= bS ·MCS − bS · 1

bS
− bS · exp(aS + bS · pS)

bS · exp(aD + bD · pD)
− aS

= bS ·MCS − 1 − exp(aS + bS · pS)

exp(aD + bD · pD)
− aS

Rewriting the equation above, we have:

exp(aS + bS · pS)

exp(aD + bD · pD)
+ bS · p∗S + aS = −1 + bS ·MCS + aS

Taking exponentials on both sides, we then have:

e
exp(aS+bS ·pS)

exp(aD+bD·pD) · ebS ·p
∗
S+aS = e−1+bS ·MCS+aS

Multiplying both sides by 1
exp(aD+bD·pD) , we then have:

e
exp(aS+bS ·pS)

exp(aD+bD·pD) · ebS ·p
∗
S+aS

exp(aD + bD · pD)
=

e−1+bS ·MCS+aS

exp(aD + bD · pD)
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Now, make the following substitution for W :

W =
ebS ·p

∗
S+aS

exp(aD + bD · pD)

This implies that WeW is:

WeW =
ebS ·p

∗
S+aS

exp(aD + bD · pD)
· e

e
bS ·p

∗
S+aS

exp(aD+bD·pD)

This is exactly equal the equation above.15 Therefore, we can make the following substitution:

WeW =
e−1+bS ·MCS+aS

exp(aD + bD · pD)

We will use two properties of the lambertW function to complete the proof. First, any lambertW equation
of the form WeW = x has a solution at W = W (x).16 Therefore, we know that a solution to the equation
above is given by:

W = W

(
e−1+bS ·MCS+aS

exp(aD + bD · pD)

)
Substituting for W, we then have:

ebS ·p
∗
S+aS

exp(aD + bD · pD)
= W

(
e−1+bS ·MCS+aS

exp(aD + bD · pD)

)
The second property of the lambertW function that we will use is the logarithmic property of the lam-

bertW function. This tells us that ln(W (x)) = ln(x) −W (x). Therefore, taking the natural logs of both
sides of this equation, we have:

bS · p∗S + aS − ln(aD + bD · pD) = −1 + bS ·MCS + aS − ln(aD + bD · pD) −W

(
e−1+bS ·MCS+aS

exp(aD + bD · pD)

)
Finally, solving this equation for p∗S , the final result is:

p∗S = MCS −
1 +W

(
eaS−1+bS ·MCS

exp(aD+bD·pD)

)
bS

9.2 Market Share with Two Firms

This derivation was also adapted from Ashwin Aravindakshan and Brian Rathford’s 2011 paper in the Review
of Marketing Science entitled “Solving Share Equations in Logit Models Using the LambertW Function.”
All credit is assigned to them for this incredibly useful result. From Section 2, let’s return to the equation
for Starbucks’s market share:

s∗S =
exp(aS + bS · pS)

exp(aS + bS · pS) + exp(aD + bD · pD)

Splitting the numerator we have:

s∗S =
exp(aS) · exp(bS · pS)

exp(aS + bS · pS) + exp(aD + bD · pD)

15Look very carefully at the the equation above. Notice that the numerator is just exp(aS + bS · pS). This don’t look the
same because of the way you wrote the es!

16Would like a footnote to explain this.
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Furthermore, we can bring the second half of the numerator to the denominator using exponent rules:

s∗S =
exp(aS)

(exp(aS + bS · pS) + exp(aD + bD · pD)) · exp(−bS · pS)

=
exp(aS)

(exp(aS) + exp(aD + bD · pD) · exp(−bS · pS))

Now, we can actually use the equation for the profit maximizing price to solve for the closed form of the
market share at the profit maximizing price:

Proof.

s∗S =
exp(aS)

exp(aS) + exp(aD + bD · pD) · exp(−bS · p∗S)

=
exp(aS)

exp(aS) + exp(aD + bD · pD) · exp

(
−bS ·

(
MCS −

1+W
(

exp(aS−1+bS ·MCS)

exp(aD+bD·pD)

)
bS

))
=

exp(aS)

exp(aS) + exp(aD + bD · pD) · exp
(
−bS ·MCS + 1 +W

(
exp(aS−1+bS ·MCS)

exp(aD+bD·pD)

))
=

exp(aS)

exp(aS) + exp(aD + bD · pD) · exp(1 − bS ·MCS) · exp
(
W
(

exp(aS−1+bS ·MCS)
exp(aD+bD·pD)

))
Using the lambertW function formulation WeW = x, we can rewrite the W term in this equation as:

s∗S =
exp(aS)

exp(aS) + exp(aD + bD · pD) · exp(1 − bS ·MCS) ·
(

exp(aS−1+bS ·MCS)

exp(aD+bD·pD)·W
(

exp(aS−1+bS ·MCS)

exp(aD+bD·pD)

))
Let’s split up some terms and do some algebra to take this to a more workable form:

s∗S =
exp(aS)

exp(aS) + exp(aD + bD · pD) · exp(1) · exp(−bS ·MCS) ·
(

exp(aS)·exp(−1)·exp(bS ·MCS)

exp(aD+bD·pD)·W
(

exp(aS−1+bS ·MCS)

exp(aD+bD·pD)

))
=

exp(aS)

exp(aS) + exp(aD + bD · pD) ·
(

exp(aS)·exp(1−1)·exp((−bS ·MCS)+(bS ·MCS))

exp(aD+bD·pD)·W
(

exp(aS−1+bS ·MCS)

exp(aD+bD·pD)

) )
=

exp(aS)

exp(aS) +(((
((((

((
exp(aD + bD · pD) ·

(
exp(aS)·��

��exp(1−1)·exp((−bS ·MCS)+(bS ·MCS))

((((
((exp(aD+bD·pD)·W

(
exp(aS−1+bS ·MCS)

exp(aD+bD·pD)

) )
=

exp(aS)

exp(aS) +

(
exp(aS)·exp(

((((
((((

(
(−bS ·MCS)+(bS ·MCS))

W
(

exp(aS−1+bS ·MCS)

exp(aD+bD·pD)

) )
=

exp(aS)

exp(aS) +

(
exp(aS)

W
(

exp(aS−1+bS ·MCS)

exp(aD+bD·pD)

))
Dividing all the numerator by exp(aS), we have:

s∗S =
1

1 +

(
1

W
(

exp(aS−1+bS ·MCS)

exp(aD+bD·pD)

))
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Rewriting the 1 in the denominator as a fraction we have:

s∗S =
1

W
(

exp(aS−1+bS ·MCS)

exp(aD+bD·pD)

)
W
(

exp(aS−1+bS ·MCS)

exp(aD+bD·pD)

) +

(
1

W
(

exp(aS−1+bS ·MCS)

exp(aD+bD·pD)

))
=

1

W
(

exp(aS−1+bS ·MCS)

exp(aD+bD·pD)

)
+1

W
(

exp(aS−1+bS ·MCS)

exp(aD+bD·pD)

)

=
W
(

exp(aS−1+bS ·MCS)
exp(aD+bD·pD)

)
1 +W

(
exp(aS−1+bS ·MCS)

exp(aD+bD·pD)

)

9.3 Profit Maximizing Price with N Firms

From Section 3, let’s return to the equation for the profit maximizing price p∗i with N firms:

p∗i = MCi −

(
bi ·

exp(ai + bDpD)∑N
i=1(exp(ai + bipi))2

)−1
· si

So we have:

p∗i = MCi −
1

bS ·
∑N
j=1 sj

From here, we can make the following substitutions to implement the lambertW function in this problem:

Proof.

p∗i = MCi −
1

bS ·
∑N
j=1 sj

= MCi −
1

bS ·
(∑N

j=1
exp(aj+bj ·pj)∑N
i=1 exp(ai+bi·pi)

) substitute the value of sj

= MCS −
∑N
i=1 exp(ai + bi · pi)

bi ·
∑N
j=1 exp(aj + bj · pj)

= MCS −

(
1

bi
·
∑N
i=1 exp(ai + bi · pi)∑N
j=1 exp(aj + bj · pj)

)
Multiplying both sides by bi and also subtracting ai from both sides, we have:

bi · p∗i − ai = bi ·

(
MCi −

(
1

bi
·
∑N
i=1 exp(ai + bi · pi)∑N
j=1 exp(aj + bj · pj)

))
− ai

= bi ·MCi − bi ·
1

bi
− bi ·

exp(ai + bi · pi)∑N
j=1 exp(aj + bj · pj)

− ai

= bi ·MCi − 1 − exp(ai + bi · pi)∑N
j=1 exp(aj + bj · pj)

− ai

Rewriting the equation above, we have:

exp(ai + bi · pi)∑N
j=1 exp(aj + bj · pj)

+ bi · p∗i + ai = −1 + bi ·MCi + ai
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Taking exponentials on both sides, we then have:

e
exp(ai+bi·pi)∑N

j=1
exp(aj+bj ·pj) · ebi·p

∗
i +ai = e−1+bi·MCi+ai

Multiplying both sides by 1∑N
j=1 exp(aj+bj ·pj)

, we then have:

e
exp(ai+bi·pi)∑N

j=1
exp(aj+bj ·pj) · ebi·p

∗
i +ai∑N

j=1 exp(aj + bj · pj)
=

e−1+bi·MCi+ai∑N
j=1 exp(aj + bj · pj)

Now, make the following substitution for W :

W =
ebi·p

∗
i +ai∑N

j=1 exp(aj + bj · pj)

This implies that WeW is:

WeW =
ebi·p

∗
i +ai∑N

j=1 exp(aj + bj · pj)
· e

e
bi·p
∗
i +ai∑N

j=1
exp(aj+bj ·pj)

This is exactly equal the equation above.17 Therefore, we can make the following substitution:

WeW =
e−1+bi·MCi+ai∑N

j=1 exp(aj + bj · pj)

We will use two properties of the lambertW function to complete the proof. First, any lambertW equation
of the form WeW = x has a solution at W = W (x).18 Therefore, we know that a solution to the equation
above is given by:

W = W

(
e−1+bi·MCi+ai∑N

j=1 exp(aj + bj · pj)

)

Substituting for W, we then have:

ebi·p
∗
i +ai∑N

j=1 exp(aj + bj · pj)
= W

(
e−1+bi·MCi+ai∑N

j=1 exp(aj + bj · pj)

)

The second property of the lambertW function that we will use is the logarithmic property of the lam-
bertW function. This tells us that ln(W (x)) = ln(x) −W (x). Therefore, taking the natural logs of both
sides of this equation, we have:

bi · p∗i + ai − ln(

N∑
j=1

(aj + bj · pj) = −1 + bi ·MCi + ai − ln(

N∑
j=1

(aj + bj · pj) −W

(
e−1+bi·MCi+ai∑N

j=1 exp(aj + bj · pj)

)

Finally, solving this equation for p∗S , the final result is:

p∗i = MCi −
1 +W

(
eai−1+bS ·MCi∑N
j=1 exp(aj+bj ·pj)

)
bi

17Look very carefully at the the equation above. Notice that the numerator is just exp(aS + bS · pS). This don’t look the
same because of the way you wrote the es!

18Would like a footnote to explain this.
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9.4 Market Share with N Firms

This derivation was also adapted from Ashwin Aravindakshan and Brian Rathford’s 2011 paper in the Review
of Marketing Science entitled “Solving Share Equations in Logit Models Using the LambertW Function.”
All credit is assigned to them for this incredibly useful result. From Section 3, let’s return to the equation
for a firm i’s market share:

s∗i =
exp(ai + bi · pi)∑N
i=1(exp(ai + bi · pi)

Splitting the numerator we have:

s∗i =
exp(ai) · exp(bi · pi)∑N
i=1(exp(ai + bi · pi)

Furthermore, we can bring the second half of the numerator to the denominator using exponent rules:

s∗i =
exp(ai)∑N

i=1(exp(ai + bi · pi)) · exp(−bi · pi)

=
exp(ai)

exp(ai) +
∑N
j=1 exp(aj + bj · pj) · exp(−bi · pi))

Now, we can actually use the equation for the profit maximizing price to solve for the closed form of the
market share at the profit maximizing price:

Proof.

s∗i =
exp(ai)

exp(ai) +
∑N
j=1 exp(aj + bj · pj) · exp(−bi · p∗i ))

=
exp(ai)

exp(ai) +
∑N
j=1 exp(aj + bj · pj) · exp

−bi ·

MCi −
1+W

(
exp(ai−1+bi·MCi)∑N
j=1

exp(aj+bj ·pj)

)
bi


=

exp(ai)

exp(ai) +
∑N
j=1 exp(aj + bj · pj) · exp

(
−bi ·MCi + 1 +W

(
exp(ai−1+bi·MCi)∑N

j=1 exp(aj+bj ·pj)

))
=

exp(ai)

exp(ai) +
∑N
j=1 exp(aj + bj · pj) · exp(1 − bi ·MCi) · exp

(
W

(
exp(ai−1+bi·MCi)∑N

j=1 exp(aj+bj ·pj)

))
Using the lambertW function formulation WeW = x, we can rewrite the W term in this equation as:

s∗i =
exp(ai)

exp(ai) +
∑N
j=1 exp(aj + bj · pj) · exp(1 − bi ·MCi) ·

 exp(ai−1+bi·MCi)∑N
j=1 exp(aj+bj ·pj)·W

(
exp(ai−1+bi·MCi)∑N
j=1

exp(aj+bj ·pj)

)
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Let’s split up some terms and do some algebra to take this to a more workable form:

s∗i =
exp(ai)

exp(ai) +
∑N
j=1 exp(aj + bj · pj) · exp(1) · exp(−bi ·MCi) ·

 exp(ai)·exp(−1)·exp(bi·MCi)∑N
j=1 exp(aj+bj ·pj)·W

(
exp(ai−1+bi·MCi)∑N
j=1

exp(aj+bj ·pj)

)


=
exp(ai)

exp(ai) +
∑N
j=1 exp(aj + bj · pj) ·

 exp(ai)·exp(1−1)·exp((−bi·MCi)+(bi·MCi))∑N
j=1 exp(aj+bj ·pj)·W

(
exp(ai−1+bi·MCi)∑N
j=1

exp(aj+bj ·pj)

)


=
exp(ai)

exp(ai) +
((((

((((
((∑N

j=1 exp(aj + bj · pj) ·

 exp(ai)·���
�

exp(1−1)·exp((−bi·MCi)+(bi·MCi))

((((
((((∑N

j=1 exp(aj+bj ·pj)·W
(

exp(ai−1+bi·MCi)∑N
j=1

exp(aj+bj ·pj)

)


=
exp(ai)

exp(ai) +

 exp(ai)·exp(((((
(((((−bi·MCi)+(bi·MCi))

W

(
exp(ai−1+bi·MCi)∑N
j=1

exp(aj+bj ·pj)

)


=
exp(ai)

exp(ai) +

 exp(ai)

W

(
exp(ai−1+bi·MCi)∑N
j=1

exp(aj+bj ·pj)

)


Dividing the numerator by exp(aS), we have:

s∗i =
1

1 +

 1

W

(
exp(ai−1+bi·MCi)∑N
j=1

exp(aj+bj ·pj)

)


Rewriting the 1 in the denominator as a fraction we have:

s∗i =
1

W

(
exp(ai−1+bi·MCi)∑N
j=1

exp(aj+bj ·pj)

)
W

(
exp(ai−1+bi·MCi)∑N
j=1

exp(aj+bj ·pj)

) +

 1

W

(
exp(ai−1+bi·MCi)∑N
j=1

exp(aj+bj ·pj)

)


=
1

W

(
exp(ai−1+bi·MCi)∑N
j=1

exp(aj+bj ·pj)

)
+1

W

(
exp(ai−1+bi·MCi)∑N
j=1

exp(aj+bj ·pj)

)

=

W

(
exp(ai−1+bi·MCi)∑N

j=1 exp(aj+bj ·pj)

)
1 +W

(
exp(ai−1+bi·MCi)∑N

j=1 exp(aj+bj ·pj)

)
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